Synthesis of (+) 8-O- Cinnamyl- p-chlorogoniotriol and its Analogues

Hong CHEN, Long En ZHOU, Yan Jun ZHANG, De Quan YU*
Institute of Meteria Medica, Chinese Academy of Medical Sciences \& Peking Union Medical College, Beijing 100050

Abstract

O-Cinnamyl-p-chlorogoniotriol (p-chlorohowiinol A) and its analogues have been synthesized in nine steps from α-D-glucoheptonic- γ-lactone. Pharmacological tests showed that most of the compounds possessed antitumor activities toward tumor cell in vitro.

Keywords: Stereoselective synthesis, (+) 8-O-cinnamyl-p-chlorogoniotriol (p-chlorohowiinol A), antitumor activity, analogues .

Howiinol A $\mathbf{1}^{1}$, a novel lactone isolated from the ethanolic extracts of the root and stem bark of Goniothamus howii Merr. (Annoaceae) in our laboratory, has been shown to possess significant antitumor activities toward human tumor in vitro and in vivo and low toxicity. Recently, we have synthesized $\mathbf{1}$ and its derivatives with different ester groups

1

$2 \mathbf{2}$
starting from commercially available α-D-glucoheptonic $-\gamma$-lactone. In order to find their relationship of structure and activity and to search for drugs with more potent antitumor activity, we have synthesized (+) 8-O-cinnamyl-p-chlorogoniotriol (p-Chlorohowiinol A) and its analogues. The route is depicted in the scheme. In our previous work lactone $\mathbf{3}$ was transformed into $\mathbf{4}$ in a yield of 71.3%, by 3 steps ${ }^{2}$. The carbonyl compound 4 reacted immediately with p-Cl-C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ (Grignard reaction was initiated with I_{2} under N_{2}, refluxed in THF for 5 h to obtain $p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}$), giving 5 and $\mathbf{6}$ (6α-isomer of $\mathbf{5}$) in an overall of yield $32.4 \%(5,18.5 \%)^{3}$. Both isomers were difficult to separate. The mixture without further separation was oxidized by sodium periodate followed immediately by Wittig alkenation furnishing the stereoselective products, which were induced to lactonize by catalytic amount of 1.8-diazabicydo-[5.4.0] undec-7-ene(DBU) in THF at $70 \sim 80^{\circ} \mathrm{C}$ providing the pyrone 7 in 63.8% yield (calculated from 5), m.p.
$203 \sim 4{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28} 121.9(0.11 \mathrm{AcOEt})$ and $\mathbf{8}(8 \alpha$-isomer of 7$)$ in 51.3% yield (calculated

Reagents and conditions:
i. 3 steps: $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{SO}_{4} ; \quad 65 \% \mathrm{AcOH} ; \quad \mathrm{NaIO}_{4}$.
ii. $P-\mathrm{Cl}-\mathrm{PhMgX}$, pure $\mathrm{N}_{2}, \mathrm{I}_{2}$, reflux.
iii. 3 steps: $\mathrm{NaIO}_{4}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, room temp., $18 \mathrm{~h} ; \quad \mathrm{ph}_{3} \mathrm{p}=\mathrm{CHCO}_{2} \mathrm{Et},-15^{\circ} \mathrm{C}, 3 \mathrm{~h}$; cat. DBU; THF, 70~80 ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.
iv and vi. acid chloride, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp..
v and vii. 75% aq. $\mathrm{AcOH}, 80-90^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
from 6), mp. 197~198 ${ }^{\circ} \mathrm{C},[\alpha]_{D}{ }^{28}-59.1$ (C 0.11 AcOEt). Both compounds were easily separated by silica gel chromatography (Rf:7 $0.23,80.32$, ethyl acetate: petroleum ether, 1:1). The esterification of $\mathbf{7}$ with cinnamyl chloride gave the ester $\boldsymbol{9}_{\mathrm{a}}$ in 86.9% yield, m.p. $224 \sim 226^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28} 111.6(\mathrm{C} 0.10 \mathrm{AcOEt})$. Acid hydrolysis of the

Table. IR, MS, ${ }^{1}$ HNMR data of compounds

Comd	IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$)	EI-MS (m/z, \%)	${ }^{1} \mathrm{HNMR}\left(\delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right.$)
7	3446, 1708	$\begin{gathered} 311\left(\mathrm{M}^{+}+2-\mathrm{Me},\right. \\ 1), 309\left(\mathrm{M}^{+}-\mathrm{Me},\right. \\ 3), 97(100) \end{gathered}$	$1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{dd}$, $J=1.8,8.7 \mathrm{~Hz}, 7-\mathrm{H}), 4,34(1 \mathrm{H}, \mathrm{dd}, J=1.8,6.3 \mathrm{~Hz}, 5-\mathrm{H})$, $4.50(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, 6-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 8-$ $\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=6.3$, $9.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.24 \sim 7.49(4 \mathrm{H}, \mathrm{m}, \mathrm{ph})$
8	3496, 1714	$\begin{aligned} & 311\left(\mathrm{M}^{+}+2-\mathrm{Me},\right. \\ & 1), 309\left(\mathrm{M}^{+}-\mathrm{Me},\right. \\ & 3), 97(100) \end{aligned}$	$1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.62(1 \mathrm{H}, \mathrm{t}$, $J=1.8 \mathrm{~Hz}, 6-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.7 \mathrm{~Hz}, 7-\mathrm{H})$, $4.19(1 \mathrm{H}, \mathrm{dd}, J=2.1,6.0 \mathrm{~Hz}, 5-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}, 8-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.80$ ($1 \mathrm{H} . \mathrm{dd}, J=5.7,9.6 \mathrm{~Hz}, 4-\mathrm{H}$), $7.35(2 \mathrm{H}, \mathrm{dd}, J=1.5$, $6.0 \mathrm{~Hz}, \mathrm{ph}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=1.5,6.0 \mathrm{~Hz}, \mathrm{ph})$
9 a	1730, 1737	$\begin{gathered} \text { 441(} \mathrm{M}^{+}+2-\mathrm{Me}, \\ 0.2), 439\left(\mathrm{M}^{+}-\right. \\ \mathrm{Me}, 0.6), 131 \\ (100) \end{gathered}$	$1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.29(1 \mathrm{H}, \mathrm{dd}$, $J=1.5 .9 .3 \mathrm{~Hz}, 7-\mathrm{H}) 4.42(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}), 6.11(1 \mathrm{H}$, d, J=9.3Hz, $8-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.65$ $\left(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.89(1 \mathrm{H}, \mathrm{dd}, J=6.0,9.6 \mathrm{~Hz}$, $4-\mathrm{H}), 7.26 \sim 7.60(9 \mathrm{H}, \mathrm{m}, \mathrm{ph}), 7.69(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}$, 3'-H)
9b	1730,1716	$\begin{gathered} 405\left(\mathrm{M}^{+}+2-\mathrm{Me},\right. \\ 0.2), 403\left(\mathrm{M}^{+}-\right. \\ \mathrm{Me}, 0.6), 95(100) \end{gathered}$	$1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.35 \sim 4.40$ $(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 8-\mathrm{H})$, $6.24(1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4,9.9 \mathrm{~Hz}, 4-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=3.3 \mathrm{~Hz}, 3$ '-H), 7.33 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{ph}$), 7.41 ($2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{ph}), 7.54\left(1 \mathrm{H}, \mathrm{d}, 7.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$
9 c	1730,1710	$445\left(\mathrm{M}^{+}+2-\mathrm{Me}\right.$, 3), $443\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 9), 135 (100)	$1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.85(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.33 \sim 4.41(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 6.20$ $(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 8-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 3-\mathrm{H})$, $6.85 \sim 6.92(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, \mathrm{ph}), 7.28 \sim 7.41(4 \mathrm{H}, \mathrm{m}$, ph), $7.98(2 \mathrm{H}, \mathrm{dd}, J=2.1,6.9 \mathrm{~Hz}, \mathrm{ph})$,
10 a	1732, 1710	$\begin{gathered} 441\left(\mathrm{M}^{+}+2-\mathrm{Me},\right. \\ 0.2), 439\left(\mathrm{M}^{+}-\right. \\ \mathrm{Me}, 0.6), \\ 131(100) \end{gathered}$	$1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.52(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=2.1 \mathrm{~Hz}, 6-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=1.8,6.0 \mathrm{~Hz}, 5-\mathrm{H})$, $4.27(1 \mathrm{H}, \mathrm{dd}, J=1.5,9.0 \mathrm{~Hz}, 7-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}$, $J=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 8-\mathrm{H}), 6.46$ $\left(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.82(1 \mathrm{H}, \mathrm{dd}, J=1.6,9.3 \mathrm{~Hz}$, $3-\mathrm{H}), 7.33 \sim 7.65(9 \mathrm{H}, \mathrm{m}, \mathrm{ph}), 7.73(1 \mathrm{H}, \mathrm{d}$, $\left.J=15.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$
10 b	1732,1716	$405\left(\mathrm{M}^{+}+2-\mathrm{Me}\right.$, $0.2), 403\left(\mathrm{M}^{+}-\right.$ Me, 0.6), 95 (100)	$1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{t}$, $J=1.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{dd}, J=1.5,6.0 \mathrm{~Hz}, 5-\mathrm{H})$, $4.32(1 \mathrm{H}, \mathrm{dd}, J=1.8,9.0 \mathrm{~Hz}, 7-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}, 8-\mathrm{H}), 6.34(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.50$ $\left(1 \mathrm{H}, \mathrm{dd}, J=1.8,3.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.78(1 \mathrm{H}, \mathrm{dd}, J=6.0$, $9.3 \mathrm{~Hz}, 4-\mathrm{H}), 7.19\left(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.25 \sim 7.57$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ph}, 5^{\prime}-\mathrm{H}$)
$11_{\text {a }}$	1730,1715	$\begin{gathered} 396\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O},\right. \\ 1), 131(100) \end{gathered}$	$4.06(1 \mathrm{H}, \mathrm{t}, J=2.7,6-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=1.5,6.0 \mathrm{~Hz}$, $5-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=3.6,6.9 \mathrm{~Hz}, 7-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{d}$, $J=9.6 \mathrm{~Hz}, 3-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 8-\mathrm{H}), 6.55$ ($1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3$ '-H), 6.94 ($1 \mathrm{H}, \mathrm{dd}, J=6.0,9.6 \mathrm{~Hz}$, $4-\mathrm{H}), 7.32 \sim 7.51(9 \mathrm{H}, \mathrm{m} . \mathrm{ph}), 7.65(1 \mathrm{H}, \mathrm{d}$, $\left.J=15.9 \mathrm{~Hz}, 3^{\prime} \mathrm{H}\right)$
$\mathbf{1 1}_{\text {b }}$	3440,1712	$\begin{aligned} & 378\left(\mathrm{M}^{+}, 1\right), 361 \\ & \left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}, 6\right), \\ & 95(100) \end{aligned}$	$4.10(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{dd}, J=1.8$, $6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.52(1 \mathrm{H}$, brs, $7-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{d}$, $J=9.3 \mathrm{~Hz}, 3-\mathrm{H}), 6.34(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 8-\mathrm{H}), 6.53$ $\left(1 \mathrm{H}\right.$, brs, $\left.4^{\prime}-\mathrm{H}\right), 6.89(1 \mathrm{H}, \mathrm{dd}, J=6.0,9.3 \mathrm{~Hz}, 4-\mathrm{H})$, $7.32 \sim 7.59\left(6 \mathrm{H}, \mathrm{m}, \mathrm{ph}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right)$

2 a	$\begin{gathered} 3386,1730, \\ 1667 \end{gathered}$	$\begin{gathered} 396\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O},\right. \\ 1), 131(100) \end{gathered}$	$4.40(1 \mathrm{H}, \mathrm{dd}, J=2.4,6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{t}$, $J=2.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=3.6,7.5 \mathrm{~Hz}, 7-\mathrm{H})$, $6.03(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 8-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 3-$ H), $6.44(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz} 2$ '-H), $7.00(1 \mathrm{H}, \mathrm{dd}$, $J=4.2,9.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.31 \sim 7.54(9 \mathrm{H}, \mathrm{m}, \mathrm{ph}), 7.72$ (1H, d, J=15.9Hz, 3'-H)
$\mathbf{2 b}_{\text {b }}$	3338,1716	$\begin{aligned} & 378\left(\mathrm{M}^{+}, 1\right), 361 \\ & \left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}, 6\right), \\ & 95(100) \end{aligned}$	$4.42(1 \mathrm{H}, \mathrm{dd}, J=2.7,6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{t}$, $J=2.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=3.6,7.5 \mathrm{~Hz}, 7-\mathrm{H})$, $6.06(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 8-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 3-$ H), $6.51\left(1 \mathrm{H}, \mathrm{dd}, J=1.8,3.3 \mathrm{~Hz} 4^{\prime}-\mathrm{H}\right), 7.99(1 \mathrm{H}, \mathrm{dd}$, $J=6.0,9.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{ph}), 7.40$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ph}, 3^{\prime}-\mathrm{H}$)
2c	3319,1697	$\begin{aligned} & 401 \quad\left(\mathrm{M}^{+}+1-\right. \\ & \left.\mathrm{H}_{2} \mathrm{O}, \quad 0.1\right), \quad 225 \\ & (65), 135(100) \end{aligned}$	$3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.39(1 \mathrm{H}, \mathrm{dd}, J=2.4,5.7 \mathrm{~Hz}, 5-$ $\mathrm{H}), 4.49(\mathrm{H}, \mathrm{t}, J=2.7 \mathrm{~Hz}, \mathrm{~m}, 6-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{dd}$, $J=2.7,6.6 \mathrm{~Hz}, 7-\mathrm{H}), 6 . .12(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.20$ $(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 8-\mathrm{H}), 6.85 \sim 6.94(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, \mathrm{ph})$, $7.29 \sim 7.46(4 \mathrm{H}, \mathrm{m}, \mathrm{ph}), 7.95 \sim 8.02(2 \mathrm{H}, \mathrm{dd}, J=2.3$, $6.9 \mathrm{~Hz}, \mathrm{ph})$

acetone protecting group in compound $\quad \mathbf{9}_{\mathrm{a}}$ gave the target compound $\mathbf{2}_{\mathrm{a}}$, in 71.5% yield, $168 \sim 169^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28} 71.2(\mathrm{C} 0.13 \mathrm{AcOEt})$. Compounds $\mathbf{2}_{\mathrm{b}-\mathrm{c}}$ and $\mathbf{1 1}_{\mathrm{a}-\mathrm{b}}$ were

Synthesized by the same method. The IR, MS, ${ }^{1} \mathrm{HNMR}$ data of (+)-8-O-cinnamyl-p-chloro-goniotriol (p-Chloro-howiinol A) and its analogues are given in the Table. Antitumor activities of ten compounds $\mathbf{2}_{\mathbf{a}-\mathbf{b},} \mathbf{7}, \mathbf{8}, \mathbf{9}_{\mathbf{a}-\mathbf{b}}, \mathbf{1 0}_{\mathbf{a}-\mathbf{b}}$ and $\mathbf{1 1}_{\mathbf{a}-\mathbf{b}}$ were screened in
 in the inhibition against A2783, HCF8, Bel 7402, KB ($\mathrm{IC}_{50} 2.22 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \sim 9.23 \times 10^{-}$ ${ }^{6} \mathrm{~mol} / \mathrm{L}$), but antitumor activities of $\mathbf{1 1}_{\mathbf{a} \sim \mathbf{b}}$ were very low. Compounds $\mathbf{1 0}_{\mathbf{a} \sim \mathbf{b}}$ showed to possess significant antitumor activities toward human tumor cell ($\mathrm{IC}_{50} 0.74 \times 10^{-}$ $\left.{ }^{6} \mathrm{~mol} / \mathrm{L} \sim 1.76 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right)$. The antitumor activities of $\mathbf{1 0}_{\mathbf{a} \sim \mathbf{b}}$ were slightly better than that of Howiinol A..

Acknowledgments

The work is supported by the National Natural Science Foundation of China and the Doctoral Foundation of State Education Commission of China. We thank the Department of Instrumental Analysis of our Institute for IR, MS, ${ }^{1}$ HNMR and $[\alpha]_{D}{ }^{28}$ measurement.

References and Notes

R. Y. Chen and D. Q. Yu, Acta Pharm. Sinica, 1998, 33(6), 453.
a) S. Y. Sun and D. Q. Yu, Acta Pharm. Sinica, 1998, 33(7), 502.
b) S. Y. Sun and D. Q. Yu, Chin. Chem. Lett., 1997, 8(4), 293.
c) S. Y. Sun and D. Q. Yu, Chin. Chem. Lett., 1997, 8(8), 863.
3. H. Chen, S. Y. Sun and D. Q. Yu, Chin. Chem. lett.,1998, 9(10), 889.
4. selective physical data ($\mathrm{mp}{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28}$):
$\mathbf{2}_{\mathrm{b}} \quad 175 \sim 176,98.2(\mathrm{c} 0.07) ; \quad \mathbf{2}_{\text {c }} \quad 221 \sim 222,75.0(\mathrm{c} 0.1) ; \quad \mathbf{9}_{\mathrm{b}} \quad 228 \sim 229,81.6(\mathrm{c} 0.09)$; 9 c $\quad 153 \sim 154,91.4(\mathrm{c} 0.11) ; \quad 10$ a $\quad 205 \sim 206,-54.1$ (c 0.09); $\quad \mathbf{1 0}_{\mathbf{b}} \quad 213 \sim 214$, -19.7 (c $0.09) ; \quad 11_{\mathrm{a}} \quad 155 \sim 156,-52.8(\mathrm{c} 0.08) ; \quad \mathbf{1 1}_{\mathrm{b}} 159 \sim 160,-13.4(\mathrm{c} 0.08)$.

Received 30 December 1998

